Selasa, 05 Juni 2012

Bilangan Bulat

Mengenal Bilangan Bulat
Kita sudah mempelajari bilangan-bilangan yang dimulai dari nol sampai tak terhingga. Selama ini yang kita pelajari 0 (nol) adalah bilangan terkecil. Tetapi, tahukan kamu bahwa ada bilangan yang lebih kecil dari 0.
1. Mengenal Bilangan Bulat Positif dan Negatif
Bilangan-bilangan 0, 1, 2, 3, 4, 5, … disebut bilangan cacah, sedangkan 1, 2, 3, 4, 5, … disebut bilangan asli. Jadi, bilangan cacah adalah gabungan dari bilangan nol dan bilangan asli.


Adakah lawan bilangan asli? Bagaimana melambangkannya? Bilangan nol, bilangan asli, dan lawan bilangan asli disebut bilangan bulat. Perhatikan garis bilangan bulat di bawah ini.
2. Membaca dan Menulis Lambang Bilangan BulatSetelah mengenal bilangan bulat positif maupun bilangan bulat negatif, bagaimana cara membaca dan menuliskan bilangan bilangan tersebut? Mari kita pelajari. Bilangan asli atau bilangan bulat positif sudah sudah sangat kita kenal, sedangkan untuk bilangan negatif cara membacanya diawali dengan kata negatif di depan bilangan.
Contoh: 10 dibaca sepuluh –10 dibaca negatif sepuluh negatif sembilan puluh sembilan dituliskan –99 seratus lima dituliskan 105
3. Penggunaan Bilangan Bulat Negatif Mengapa harus ada bilangan negatif? Pernahkah kamu mendengar kalimat-kalimat seperti di bawah ini?
a. Suhu di daerah kutub dapat mencapai lima belas derajat di bawah nol.
b. Daerah itu rawan banjir karena ketinggiannya lima sentimeter di bawah permukaan air laut.
Nah kawan, bagaimana menuliskan bilangan lima belas derajat di bawah nol? Bagaimana pula menuliskan bilangan lima sentimeter di bawah permukaan air laut? Bilangan-bilangan tersebut dapat kita tuliskan dengan menggunakan bilangan bulat negatif. Lima belas di bawah nol dapat dituliskan –15. Lima di bawah permukaan dapat dituliskan –5. Jadi, dua kalimat di atas dapat dituliskan sebagai berikut a. Suhu di daerah kutub dapat mencapai –15 derajat. b. Daerah itu rawan banjir karena ketinggiannya –5 cm.
4. Membandingkan dan Mengurutkan Bilangan Bulat Telah kita pelajari di depan bahwa bilangan negatif lebih kecil dari nol. Mari kita perhatikan garis bilangan berikut ini.

Semakin ke kiri nilai bilangan semakin kecil. Sebaliknya, semakin ke kanan nilai bilangan semakin besar.Sekarang, mari kita lengkapi perbandingan bilangan bulat di bawah ini dengan memberi tanda lebih besar (>) atau lebih kecil (<).


Nah kawan, dengan membandingkan dua bilangan bulat, kamu dapat mengurutkan bilangan-bilangan bulat dari yang terkecil maupun dari yang terbesar. Untuk membantu mengurutkan bilangan-bilangan bulat, dapat kita gunakan garis bilangan .
Contoh: Urutkan bilangan-bilangan berikut ini. –5, 10, –25, 20, –10, 0, 30 Jawab: Masing-masing bilangan tersebut dapat dituliskan pada garis bilangan di bawah ini.

Urutan bilangan dari yang terkecil adalah –25, –10, –5, 0, 10, 20, 30 Urutan bilangan dari yang terbesar adalah 30, 20, 10, 0, –5, –10, –25
B. Penjumlahan Bilangan Bulat
Sebelum mempelajari penjumlahan bilangan bulat lebih lanjut, penjumlahan yang melibatkan bilangan nol dan bilangan bulat positif harus sudah kamu kuasai dengan baik.
1. Penjumlahan Menggunakan Garis Bilangan
Penjumlahan bilangan dapat dilakukan dengan bantuan garis bilangan dengan membuat diagram panah yang menyertakan bilangan.
a. Mengenal Bilangan Bulat dengan Diagram Panah
Sebuah bilangan bulat dapat ditunjukkan dengan diagram panah pada garis bilangan yang mempunyai panjang dan arah. Panjang diagram panah menunjukkan banyaknya satuan, sedangkan arahnya menunjukkan positif atau negatif.
Jika diagram panah menuju ke arah kanan, maka anak panah tersebut menunjukkan bilangan bulat positif. Jika diagram panah menuju ke kiri, maka anak panah tersebut menunjukkan bilangan bulat negatif. Menunjukkan bilangan 7





b. Menjumlah Bilangan Bulat dengan Diagram Panah
Penjumlahan bilangan bulat dengan diagram panah dimulai dari bilangan nol. Mari kita perhatikan contoh berikut ini.
Contoh: Tentukan hasil penjumlahan dari: a. 3 + (–4) b. (–6) + 8 c. (–2) + (–5)
Jawab: a. 3 + (–4)


Diagram panah dari 0 ke 3 menunjukkan bilangan 3 Diagram panah dari 3 ke –1 menunjukkan bilangan –4 Hasilnya ditunjukkan diagram panah dari 0 ke –1 Jadi, 3 + (–4) = –1
b. (–6) + 8


Jadi, (–6) + 8 = 2

2. Penjumlahan Tanpa Menggunakan Garis Bilangan
Untuk bilangan-bilangan antara –20 sampai 20 masih mungkin dilakukan penjumlahan dengan garis bilangan. Untuk menjumlahkan bilangan-bilanagn yang lebih besar, mungkinkah dilakukan dengan garis bilangan? Jika begitu, bagaimanakah cara menjumlahkannya? Mari kita perhatikan contoh penjumlahan berikut ini.
Contoh: Tentukan hasil penjumlahan berikut: a. 56 + (–18) b. (–206) + 106
Jawab: a. 56 + (–18) = 56 – 18 = 38
b. (–206) + 106 = 106 + (–206) = 106 – 206 = 106 – 106 – 100 = –100
Ternyata penjumlahan dengan bilangan negatif dapat dilakukan dengan pengurangan dari lawan bilangan negatif tersebut.
C. Pengurangan Bilangan Bulat
Setelah dapat melakukan penjumlahan bilangan bulat, marilah kita belajar pengurangan bilangan bulat. Sebelumnya, mari kita pahami dulu bilangan bulat yang saling berlawanan.
1. Lawan Bilangan Bulat Di awal bab ini, kita telah mempelajari bahwa bilangan asli atau bilangan bulat positif saling berlawanan dengan bilangan bulat negatif. Mari kita pelajari lebih lanjut.

a. Bilangan bulat yang terletak 2 satuan di kanan 0 adalah . . . . Bilangan bulat yang terletak 2 satuan di kiri 0 adalah . . . .
b. Bilangan bulat yang terletak 6 satuan di kanan 0 adalah . . . . Bilangan bulat yang terletak 6 satuan di kiri 0 adalah . . . .
c. Bilangan –8 terletak . . . . satuan di sebelah . . . . titik 0 Bilangan 8 terletak . . . . satuan di sebelah . . . . titik 0
d. Bilangan –10 terletak . . . . satuan di sebelah . . . . titik 0 Bilangan 10 terletak . . . . satuan di sebelah . . . . titik 0 Dari jawaban-jawaban yang kamu isikan di atas, dapat kita simpulkan bahwa bilangan bulat positif dapat diatur berpasangan dengan bilangan bulat negatif seperti ditunjukkan diagram panah pada gambar garis bilangan berikut ini.

Secara lengkap dapat kita simpulkan sebagai berikut: Bilangan-bilangan bulat di sebelah kiri titik nol saling berlawanan dengan bilangan di sebelah kanan titik nol yang berjarak sama.
Contoh: Tentukan lawan dari bilangan bulat berikut: a. 7 b. –15
Jawab: a.
Jadi, lawan dari 7 adalah –7


b. Dengan cara yang sama, lawan dari –15 adalah 15
2. Mengurangkan Bilangan Bulat
Pengurangan adalah lawan dari penjumlahan. Bagaimana cara mengurangkan bilangan bulat. Mari perhatikan contoh berikut ini.
Contoh: Tentukan hasil pengurangan berikut: a. 2 – 5 c. (–2) – 5 b. 2 – (–5) d. (–2) – (–5) Jawab: a. 2 – 5
Jadi, 2 – 5 = –3


b. 2 – (–5)
Jadi, 2 – (–5) = 7


c. (–2) – 5
Jadi, (–2) – 5 = –7



d. –2 – (–5)
Jadi, (–2) – (–5) = 3
Selanjutnya, mari kita bandingkan hasil-hasil pengurangan di atas dengan penjumlahan di bawah ini. a. 2 + (–5) = –3 c. (–2) + (–5) = –7 b. 2 + 5 = 7 d. (–2) + 5 = 3
Nah kawan, perhatikan dan bandingkan dengan cermat. Apa yang dapat kamu simpulkan?
Pengurangan bilangan bulat adalah penjumlahan dengan lawan bilangannya a – b = a + (–b) a – (–b) = a + b
Contoh: Tentukan hasil pengurangan bilangan bulat berikut: a. (–45) – (–5) c. 125 – 25 b. 99 – (–11) d. (–150) – 50
Jawab: a. (–45) – (–5) = (–45) + 5 = –40 b. 99 – (–11) = 99 + 11 = 110 c. 125 – 25 = 100 d. (–150) – 50 = (–150) + (–50) = –200

D. Operasi Hitung Campuran
Nah kawan, berikutnya yang akan kita pelajari adalah operasi hitung campuran antara penjumlahan dan pengurangan. Mari kita perhatikan contoh berikut ini.
Contoh: Tentukan hasil operasi hitung berikut ini. a. (–4) + 12 – 3 b. 6 – (–4) + 15
Jawab: a. (–4) + 12 – 3
Jadi, (–4) + 12 – 3 = 5


b. 6 – (–4) + (–15)
Jadi, 6 – (–4) + (–15) = –5


Selain dengan garis bilangan, operasi hitung campuran dapat dikerjakan secara langsung seperti contoh berikut ini.
Contoh: Tentukan hasil operasi hitung berikut ini. a. 42 + (–35) – 12 b. (–50) – (–25) + 45
Jawab: a. 42 + (–35) – 12 = 42 – 35 – 12 = 7 – 12 = –5 b. (–50) – (–25) + 45 = (–50) + 25 + 45 = (–25) + 45 = 20

Beri Penilaian
Lambang Bilangan Bulat
Lambang bilangan bulat bentuk panjangnya merupakan hasil penjumlahan dari perkalian bilangan dengan pemangkatan bilangan 10.
Contoh:
2.345  = 2.000 + 300 + 40 + 5
          = 2x103 + 3 x102 + 4 x101 + 5 x 100
2.345  = 2 ribuan + 3 ratusan + 4 puluhan + 5 satuan

Menentukan Nilai Tempat Bilangan
Contoh:
1) 53.451
    Dibaca lima puluh tiga ribu empat ratus lima puluh satu.
2) 212.583
    Dibaca dua ratus dua belas ribu lima ratus delapan puluh tiga
3) 2.523.459
    Dibaca dua juta lima ratus dua puluh tiga ribu empat ratus lima puluh sembilan

Himpunan Bilangan Bulat
Bilangan bulat adalah bilangan yang terdiri dari:
a Bilangan bulat positif (bilangan asli)
b Bilangan nol
c. Bilangan bulat negatif (lawan bilangan asli)

Sifat Perkalian dari Urutan Bilangan Bulat
a. Jika a > b, dan c bilangan bulat positif, maka a x c > b x c
jika a < b, dan c bilangan bulat positif, maka a x c < b x c
Contoh
1) 6 > 2 dan 6 bilangan bulat positif, maka 6x6 > 2x6
2) 5 < 7 dan 3 bilangan bulat positif, maka 5x3 < 7x3
b. Jika a > b, dan c bilangan bulat negatif, maka axc < bxc
Jika a < b, dan c bilangan bulat negatif, maka axc > bxc
Contoh
1) -2 >-6 dan -3 (bilangan bulat negatif), maka -2 x (-3) < -6 x (-3)
2) -3 < 2 dan -5 (bilangan bulat negatif), maka -3 x (-5) > 2x(-5)
c. Jika a > b atau a < b, dan c adalah bilangan nol, maka axc = bxc = 0
Contoh
1) 4 > -2, maka 4 x 0 = -2 x 0 = 0
2) 3 < 5, maka 3 x 0 = 5 x 0 = 0

Lawan bilangan bulat
a. Setiap bilangan bulat mempunyai tepat satu lawan yang juga merupakan bilangan bulat
b. Dua bilangan bulat dikatakan berlawanan, apabila dijumlahkan menghasilkan nilai nol.
a + (-a) = 0
Contoh
1) Lawan dari 4 adalah -4, sebab 4 + (-4) = 0
2) Lawan dari -7 adalah 7, sebab -7 + 7 = 0
3) Lawan dari 0 adalah 0, sebab 0 + 0 = 0
Operasi bilangan bulat
Penjumlahan dan pengurangan bilangan bulat
Image:Mat_3.png
d. Menjumlahkan bilangan bulat negatif dengan bilangan positif.
Contoh
-6 + 8 = 2, digambarkan pada garis bilangan.
Perkalian Bilangan Bulat
Perkalian adalah penjumlahan berulang sebanyak bilangan yang dikalikan.
Contoh:
2 x 3 - 3 + 3 = 6
Perhatikan gambar di bawah ini, ya!

Sifat-sifat perkalian suatu bilangan
a. Perkalian bilangan positif dengan bilangan positif, hasilnya positif.
Contoh:
1) 4 x 5 = 5 + 5 + 5 + 5 = 20
2) 7 x 8 = 56
3) 12 x 15 = 180
b Perkalian bilangan positif dengan bilangan negatif, hasilnya negatif.
Contoh:
1) 4 x (-5) = (-5) + (-5) +(-5) +(-5) = -20
2) 7 x (-8) = -56
3) 12 x (-15) = -180
c. Perkalian bilangan negatif dengan bilangan positif, hasilnya negatif.
Contoh:
1) -4 x 5 = -(5 + 5 + 5 + 5) = -20.
2) -7 x 8 = -56
3) -12x 15 = -180
d. Perkalian bilangan negatif dengan bilangan negatif, hasilnya positif.
Contoh:
1) -4 x (-5) = -[-5 + (-5) + (-5) + (-5)] = -[-20] = 20
2) -7 x (-8) = 56
3) -12 x (-15) = 180
Kesimpulan:

KOEFISIEN, VARIABEL, KONSTANTA, DAN SUKU

Di kelas VII kalian telah mempelajari mengenai bentukbentuk aljabar. Coba kalian ingat kembali materi tersebut, agar kalian dapat memahami bab ini dengan baik. Selain itu, kalian juga harus menguasai materi tentang KPK dari dua bilangan atau lebih dan sifat-sifat operasi hitung pada bilangan bulat. Perhatikan  uraian berikut.
Bonar dan Cut Mimi membeli alat-alat tulis di koperasi sekolah. Mereka membeli 5 buku tulis, 2 pensil, dan 3 bolpoin. Jika buku tulis dinyatakan dengan x, pensil dengan y, dan bolpoin dengan z maka Bonar dan Cut Mimi membeli 5x + 2y + 3z. Selanjutnya, bentuk-bentuk 5x + 2y + 3z, 2x2, 4xy2, 5x2 – 1, dan (x – 1) (x + 3) disebut bentuk-bentuk aljabar. Sebelum mempelajari faktorisasi suku aljabar, marilah kita ingat kembali istilah-istilah yang terdapat pada bentuk aljabar.
1. Variabel
Variabel adalah lambang pengganti suatu bilangan yang belum diketahui nilainya dengan jelas. Variabel disebut juga peubah. Variabel biasanya dilambangkan dengan huruf kecil a, b, c, ... z.
2. Konstanta
Suku dari suatu bentuk aljabar yang berupa bilangan dan tidak memuat variabel disebut konstanta.
3. Koefisien
Koefisien pada bentuk aljabar adalah faktor konstanta dari suatu suku pada bentuk aljabar.
4. Suku
Suku adalah variabel beserta koefisiennya atau konstanta pada bentuk aljabar yang dipisahkan oleh operasi jumlah atau selisih.
a. Suku satu adalah bentuk aljabar yang tidak dihubungkan oleh operasi jumlah atau selisih.
Contoh: 3x, 4a2, –2ab, ...
b. Suku dua adalah bentuk aljabar yang dihubungkan oleh satu operasi jumlah atau selisih.
Contoh: a2 + 2, x + 2y, 3x2 – 5x, ...
c. Suku tiga adalah bentuk aljabar yang dihubungkan oleh dua operasi jumlah atau selisih.
Contoh: 3x2 + 4x – 5, 2x + 2y – xy, ...
Bentuk aljabar yang mempunyai lebih dari dua suku disebut suku banyak atau polinom.
Nanti, di tingkat yang lebih lanjut kalian akan mempelajari mengenai suku banyak atau polinom.

B. OPERASI HITUNG PADA BENTUK ALJABAR

1. Penjumlahan dan PenguranganSelanjutnya, jika Ujang diberi kakaknya 7 kelereng merah dan 3
kelereng putih maka banyaknya kelereng Ujang sekarang adalah 22x + 12y. Hasil ini diperoleh dari (15x + 9y) + (7x + 3y). Amatilah bentuk aljabar 3x2 – 2x + 3y + x2 + 5x + 10. Sukusuku 3x2 dan x2 disebut suku-suku sejenis, demikian juga sukusuku –2x dan 5x. Adapun suku-suku –2x dan 3y merupakan sukusuku tidak sejenis.
Suku-suku sejenis adalah suku yang memiliki variabel dan pangkat dari masing-masing variabel yang sama. Pemahaman mengenai suku-suku sejenis dan suku-suku tidak sejenis sangat bermanfaat dalam menyelesaikan operasi penjumlahan dan pengurangan dari bentuk aljabar. Operasi penjumlahan dan pengurangan pada bentuk aljabar dapat diselesaikan dengan memanfaatkan sifat komutatif, asosiatif, dan distributif dengan memerhatikan suku-suku yang sejenis. Coba kalian ingat kembali sifat-sifat yang berlaku pada penjumlahan dan pengurangan bilangan bulat. Sifat-sifat tersebut berlaku pada penjumlahan dan pengurangan bentuk aljabar.
Perhatikan uraian berikut ini.
Ujang memiliki 15 kelereng merah dan 9 kelereng putih. Jika kelereng merah dinyatakan dengan x dan kelereng putih dinyatakan dengan y maka banyaknya kelereng Ujang adalah 15x + 9y.
2. Perkalian
a. Perkalian suatu bilangan dengan bentuk aljabar
Coba kalian ingat kembali sifat distributif pada bilangan bulat.
Jika a, b, dan c bilangan bulat maka berlaku a(b + c) = ab + ac.
Sifat distributif ini dapat dimanfaatkan untuk menyelesaikan operasi perkalian pada bentuk aljabar.
Perkalian suku dua (ax + b) dengan skalar/bilangan k dinyatakan sebagai berikut.
k(ax + b) = kax + kb
b. Perkalian antara bentuk aljabar dan bentuk aljabar
Telah kalian pelajari bahwa perkalian antara bilangan skalar k dengan suku dua (ax + b) adalah k (ax + b) = kax + kb. Dengan memanfaatkan sifat distributif pula, perkalian antara bentuk aljabar suku dua (ax + b) dengan suku dua (ax + d) diperoleh sebagai berikut.
(ax + b) (cx + d) = ax(cx + d) + b(cx + d)
= ax(cx) + ax(d) + b(cx) + bd
= acx2 + (ad + bc)x + bd
Sifat distributif dapat pula digunakan pada perkalian suku dua dan suku tiga.
3. Perpangkatan Bentuk Aljabar
Coba kalian ingat kembali operasi perpangkatan pada bilangan bulat. Operasi perpangkatan diartikan sebagai operasi perkalian berulang dengan unsur yang sama. Untuk sebarang bilangan bulat a, Sekarang kalian akan mempelajari operasi perpangkatan pada bentuk aljabar.
4. Pembagian
Kalian telah mempelajari penjumlahan, pengurangan, perkalian, dan perpangkatan pada bentuk aljabar. Sekarang kalian akan mempelajari pembagian pada bentuk aljabar.
Telah kalian pelajari bahwa jika suatu bilangan a dapat diubah menjadi a = p 􀁵 q dengan a, p, q bilangan bulat maka p dan q disebut faktor-faktor dari
a. Hal tersebut berlaku pula pada bentuk aljabar.

C. PEMFAKTORAN BENTUK ALJABAR

Di kelas VII kalian telah mempelajari materi mengenai KPK dan FPB. Pada materi tersebut kalian telah mempelajari cara menentukan kelipatan dan faktor dari suatu bilangan. Coba ingat kembali cara menentukan faktor dari suatu bilangan.

D. OPERASI PADA PECAHAN BENTUK ALJABAR

1. Penjumlahan dan Pengurangan Pecahan Aljabar
Di kelas VII kalian telah mempelajari operasi penjumlahan dan pengurangan pada pecahan aljabar dengan penyebut suku satu. Sama seperti pada pecahan aljabar dengan penyebut suku satu, pada pecahan aljabar dengan penyebut suku dua dan sama dapat langsung dijumlah atau dikurangkan pembilangnya. Adapun pada penjumlahan dan pengurangan pecahan aljabar dengan penyebut berbeda dapat dilakukan dengan cara menyamakan penyebutnya terlebih dahulu menjadi kelipatan persekutuan terkecil (KPK) dari penyebut-penyebutnya.

Gelombang

 Amplitudo pada tali yang digetarkan terus menerus akan selalu tetap, oleh karenanya gelombang yang memiliki amplitudo yang tetap setiap saat disebut gelombang berjalan.
Misalkan seutas tali kita getarkan ke atas dan ke bawah berulang-ulang seperti pada Gambar disamping ini. Titik P berjarak x dart titik 0 (sumber getar), Ketika titik 0 bergetar maka getaran tersebut merambat hingga ke titik P,Waktu yang diperlukan oleh gelombang untuk merambat dari titik o ke titik P adalah x / v dengan demikian bila titik 0 telah bergetar selama t detik maka titik p telah bergetar selama tP dengan

tp= t- x/v

Berdasarkan uraian diatas maka akan didapatkan persamaan simpangan gelombang, sebagai berikut:
y=A sin⁡ 2π/T t

gambar:gel berjalan pada tali.jpg
Persamaan simpangan di titik P dapat diperoleh dengan mengganti nilai t dengan tp sehingga kita dapatkan hubungan berikut.
yp = A sin⁡ 2π/T (t- x/v)

A = amplitudo gelombang (m)
T = periode gelombang (s)
t = lamanya titik 0 (sumber getar) bergetar (s)
x = jarak titik P dari sumber getar (m)
v = cepat rambat gelombang (m/s)
yp= simpangan di titik P (m)
dalam hal ini gelombang memiliki dua kemungkinan dalam arah rambatannya, oleh karenanya perlu diperhatikan langkah sebagai berikut:
  • Apabila gelombang merambat ke kanan dan titik asal 0 bergetar ke atas maka persamaan simpangan titik P yang digunakan adalah:
yp = A sin⁡2π/T (t- x/v)

  • Apabila gelombang merambat ke kiri dan titik asal 0 bergetar ke bawah maka persamaan simpangan titik P yang digunakan adalah:
yp = - A sin⁡ 2π/T (t- x/v)
'
Fase di definisikan sebagai perbandingan antara waktu sesaat untuk meninggalkan titik keseimbang (titik 0) dan periode. Dengan demikian fase gelombang dititik P dapat ditulis sebagai berikut:
φ= tp/T
= (t- x/v)/T                                            φ= t/T -  x/λ             
= t/T- x/vT

Sehingga dihasilkan :
Sedangkan untuk mengukur besarnya sudut fase di titik P dapat dituliskan sebagai berikut:
θp = 2π φ_p
     =2π (t/T- x/λ)
Beda fase antara dua titik yang berjarak X2 dan X1 dari sumber getar dapat dituliskan sebagai berikut:
Δφ  = ( x- x1)/λ
Δφ  =  ∆x/λ
Nilai kecepatan dan percepatan gelombang di suatu titik dapat diketahui dengan menurunkan persamaan keduanya, sebagai berikut:
vp = 2π/T A cos⁡ 2π/T (t- x/v)
ap= - (4π2)/T2 A cos⁡ 2π/T (t- x/v)

Keterangan:
vp = kecepatan partikel di titik p (m/s)
ap = percepatan partikel di titik p (m/s2)

'
Contoh soal:

Suatu gelombang berjalan memiliki persamaan y = 10 sin (0,8πt - 0,5;t) dengan y dalam cm dan t dalam detik. Tentukanlah kecepatan dan percepatan maksimumnya!
Pembahasan:
y=10sin⁡(0,8 πt-0,5 πx)
v = dy/dt
v=(10)(0,8 π) cos⁡ (0,8 πt-0,5 πx)
nilai v maksimum bila cos⁡  (0,8 πt-0,5 πx)=1

b. Gelombang Stasioner 

       Adalah gelombang yang memiliki amplitudo yang berubah – ubah antara nol sampai nilai maksimum tertentu.
Gelombang stasioner dibagi menjadi dua, yaitu gelombang stasioner akibat pemantulan pada ujung terikat dan gelombang stasioner pada ujung bebas.
                     gambar:a.jpg                   gambar:b.jpg
 
Seutas tali yang panjangnya l kita ikat ujungnya pada satu tiang sementara ujung lainnya kita biarkan, setela itu kita goyang ujung yang bebas itu keatas dan kebawah berulang – ulang. Saat tali di gerakkan maka gelombang akan merambat dari ujung yang bebas menuju ujung yang terikat, gelombang ini disebut sebagai gelombang dating. Ketika gelombang dating tiba diujung yang terikat maka gelombang ini akan dipantulkan sehingga terjadi interferensi gelombang.
       Untuk menghitung waktu yang diperlukan gelombang untuk merambat dari titik 0 ke titik P adalah (l- x)/v . sementara itu waktu yang diperlukan gelombang untuk merambat dari titik 0 menuju titik P setelah gelombang mengalami pemantulan adalah(l+x)/v , kita dapat mengambil persamaan dari gelombang dating dan gelombang pantul sebagai berikut:

y1= A sin 2π/T (t- (l-x)/v) untuk gelombang datang,
y2= A sin 2π/T (t- (l+x)/v+ 1800) untuk gelombang pantul
Keterangan:
a. Gambar pemantulan gelombang pada  ujung tali yang terikat.
b. Gambar pemantulan gelombang pada  ujung tali yang dapat bergerak bebas.

sehingga untuk hasil interferensi gelombang datang dan gelombang pantul di titik P yang berjarak x dari ujung terikat adalah sebagai berikut:

y  =  y1+ y2
    =A sin⁡ 2π (t/T- (l-x)/λ)+ A sin⁡2π(t/T- (1+x)/λ+ 1800 )
    Dengan menggunakan aturan sinus maka penyederhanaan rumus menjadi:
    sin⁡ A + sin⁡ B = 2 sin⁡ 1/2 (A+B) - cos⁡1/2  (A-B)

Menjadi:
y= 2 A sin⁡ (2π x/λ )  cos ⁡2π  (t/T - l/λ)
y= 2 A sin⁡ kx cos⁡ (2π/T t - 2πl/λ)
Rumus interferensi
y= 2 A sin⁡ kx cos⁡ (ωt- 2πl/λ)
Keterangan :
A  = amplitude gelombang datang atau pantul (m)
k  =  2π/λ
ω  = 2π/T (rad/s)
l   = panjang tali (m)
x  = letak titik terjadinya interferensi dari ujung terikat (m)
λ  = panjang gelombang (m)
t  = waktu sesaat (s)
Ap = besar amplitude gelombang stasioner (AP)
Ap = 2 A sin kx
Jika kita perhatikan gambar pemantulan gelombang diatas , gelombang yang terbentuk adalah gelombang transversal yang memiliki bagian – bagian diantaranya perut dan simpul gelombang. Perut gelombang terjadi saat amplitudonya maksimum sedangkan simpul gelombang terjadi saat amplitudonya minimum. Dengan demikian kita akan dapat mencari letak titik yang merupakan tempat terjadinya perut atau simpul gelombang.

Tempat simpul (S) dari ujung pemantulan
S=0,1/2 λ,λ,3/2 λ,2λ,dan seterusnya
=n (1/2 λ),dengan n=0,1,2,3,….
Tempat perut (P) dari ujung pemantulan
P= 1/4 λ,3/4 λ,5/4 λ,7/4 λ,dan seterusnya
=(2n-1)[1/4 λ],dengan n=1,2,3,….

Superposisi gelombang

    Jika ada dua gelombang yang merambat pada medium yang sama, gelombang-gelombang tersebut akan dating di suatu titik pada saat yang sama sehingga terjadilah superposisi gelombang . Artinya, simpangan gelombang – gelombang tersebut disetiap titik dapat dijumlahkan sehingga menghasilkan sebuah gelombang baru.
    Persamaan superposisi dua gelombang tersebut dapat diturunkan sebagai berikut:
y= A sin⁡ ωt ; y2 = A sin⁡ (ωt+ ∆θ) 
    Kedua gelombang tersebut memiliki perbedaan sudut fase sebesar Δθ
Persamaan simpangan gelombang hasil superposisi kedua gelombang tersebut adalah:
y = 2 A sin⁡ (ωt+ ∆θ/2) cos⁡(∆θ/2) 

    Dengan 2A cos (∆θ/2) disebut sebagai amplitude gelombang hasil superposisi.
Dengan 2A cos (∆θ/2) disebut sebagai amplitude gelombang hasil superposisi.

Gelombang Stasioner Pada Ujung Bebas

gambar:gel.stasioner ujung bebas.jpg


Pada gelombang stasioner pada ujung bebas gelombang pantul tidak mengalami pembalikan fase. Persamaan gelombang di titik P dapat dituliskan seperti berikut:
y1=A sin⁡〖2π/T 〗 (t- (l-x)/v) untuk gelombang datang
y2=A sin⁡〖2π/T 〗 (t- (l+x)/v) untuk gelombang pantul

y   =  y1 + y2
     =   A sin⁡ 2π/T (t- (l-x)/v) + A sin⁡ 2π/T  (t- (l+x)/v)
  y =   2 A cos⁡ kx sin⁡2π(t/T- 1/λ)

Rumus interferensi antara gelombang datang dan gelombang pantul pada ujung bebas, adalah:
y=2 A cos⁡ 2π (x/λ) sin⁡2π(t/T- l/λ) 
Dengan:
As=2A cos⁡2π(x/λ) disebut sebagai amplitude superposisi gelombang pada pemantulan ujung tali bebas.

Ap = 2 A cos kx adalah amplitudo gelombang stasioner.
1) Perut gelombang terjadi saat amplitudonya maksimum, yang secara matematis dapat ditulis sebagai berikut:
     
Ap maksimum saat cos⁡〖(2π  x)/( λ)〗= ±1 sehingga
     x= (2n) 1/4 λ,dengan n = 0,1,2,3,…….
.
2) Simpul gelombang terjadi saat amplitudo gelombang minimum, ditulis sebagai berikut:
Ap minimum saat cos⁡〖(2π x)/( λ)〗=0 sehingga
x= (2n +1) 1/4 λ,dengan n = 0,1,2,3,……..

Gelombang stasioner pada ujung terikat

gambar:stasioner ujung terikat.jpg

     Persamaan gelombang datang dan gelombang pantul dapat ditulis sebagai berikut:
y1= A sin⁡2π (t/T- (l-x)/λ) untuk gelombang datang
y2= A sin⁡2π (t/T- (l+x)/λ) untuk gelombang pantul
'
Superposisi gelombang datang dan gelombang pantul di titik q akan menjadi:''''
y = y1 + y2
y=A sin⁡ 2π (t/T- (l-x)/λ) - A sin⁡2π(t/(T ) – (l+x)/λ)

Dengan menggunakan aturan pengurangan sinus,
sin⁡α - sin⁡β = 2 sin⁡ 1/2  (α-β) cos⁡1/2 (α+β)

Persamaan gelombang superposisinya menjadi
y = 2 A sin⁡ 2π(x/λ) cos⁡2π (t/T- l/λ) 
Amplitudo superposisi gelombangnya adalah:
As = 2A sin⁡2π(x/λ)

Dengan As adalah amplitudo gelombang superposisi pada pemantulan ujung terikat.

1) Perut gelombang terjadi saat amplitudonya maksimum, 
    karenanya dapat ditentukan dengan rumus sebagai berikut:
    Ap=2 A sin⁡ 2π/λ x
Ap maksimum terjadi saat sin⁡ 2π/λ  x= ±1 sehingga
                                                     x= (2n+1) 1/4 λ,dengan n=0,1,2,3…….

2) Simpul gelombang terjadi saat amplitudonya minimum, 
   yang dapat ditulis sebagai berikut:
   Ap=2 A sin⁡(2π/λ) x
  Ap minimum terjadi saat sin ⁡2π/λ x = 0 sehingga
                                                        x = (2n) 1/4 λ,dengan n=0,1,2,3,…..

Contoh soal :
       Seutas tali panjangnya 5 m dengan ujung ikatannya dapat bergerak dan ujung lainnya digetarkan dengan frekuensi 8 Hz sehingga gelombang merambat dengan kelajuan 3 ms-1. Jika diketahui amplitude gelombang 10 cm, tentukanlah:
Persamaan simpangan superposisi gelombang di titik P yang berjarak 1 meter dari ujung pemantulan.
Amplitude superposisi gelombang di titik P; dan
Letak perut gelombang diukur dari ujung pemantulan.

Penyelesaian:
Diketahui : l = 5 m; f= 8 Hz; v = 3 ms-1; A=10cm = 0,1 m;
λ= v/(f )= 3/(8 ) m,dan T=1/f=1/8 s
   a. Persamaan simpangan di titik P, satu meter dari ujung pemantulan.
                y     =    2 A cos⁡ 2π(x/λ) sin⁡ 2π (t/T-l/λ)
                       =    2(0,1) cos⁡2π(1/(3/8)) sin⁡2π(t/(1/8)- 5/(3/8))
                       =    0,2cos⁡〖16π/3〗 sin(16 πt-80π/3)meter

   b. Amplitudo superposisi gelombang di titik P ( x = 1m).
              As = 2 A cos⁡ 2π (x/λ)  = 2 (0,1) cos⁡2π(1/(3/8))
                   = 0,2cos⁡ (16π/3)     = 0,2 cos⁡(4 4/3 π)
                   = 0,2cos⁡(4/3 π)      = 0,2 cos⁡ 2400 = 0,2(-1/2) = -0.1 m
       tanda (–)menunjukkan di titik P simpangannya ke bawah.
   c.  Letak perut gelombang dari ujung pemantulan.
       x= (2n) 1/4 λ,dengan n=0,1,2,3…
       x= 3/32 m,x=3/16 m,x=3/8m,

Gerak Peluru

 Pada pokok bahasan Gerak Lurus, baik GLB, GLBB dan GJB, kita telah membahas gerak benda dalam satu dimensi, ditinjau dari perpindahan, kecepatan dan percepatan. Kali ini kita mempelajari gerak dua dimensi di dekat permukaan bumi yang sering kita jumpai dalam kehidupan sehari-hari.
Pernakah anda menonton pertandingan sepak bola ? mudah-mudahan pernah walaupun hanya melalui Televisi. Gerakan bola yang ditendang oleh para pemain sepak bola kadang berbentuk melengkung. Mengapa bola bergerak dengan cara demikian ?
Selain gerakan bola sepak, banyak sekali contoh gerakan peluru/parabola yang kita jumpai dalam kehidupan sehari-hari. Diantaranya adalah gerak bola volly, gerakan bola basket, bola tenis, bom yang dijatuhkan, peluru yang dtembakkan, gerakan lompat jauh yang dilakukan atlet dan sebagainya. Anda dapat menambahkan sendiri. Apabila diamati secara saksama, benda-benda yang melakukan gerak peluru selalu memiliki lintasan berupa lengkungan dan seolah-olah dipanggil kembali ke permukaan tanah (bumi) setelah mencapai titik tertinggi. Mengapa demikian ?
Benda-benda yang melakukan gerakan peluru dipengaruhi oleh beberapa faktor. Pertama, benda tersebut bergerak karena ada gaya yang diberikan. Mengenai Gaya, selengkapnya kita pelajari pada pokok bahasan Dinamika (Dinamika adalah ilmu fisika yang menjelaskan gaya sebagai penyebab gerakan benda dan membahas mengapa benda bergerak demikian). Pada kesempatan ini, kita belum menjelaskan bagaimana proses benda-benda tersebut dilemparkan, ditendang dan sebagainya. Kita hanya memandang gerakan benda tersebut setelah dilemparkan dan bergerak bebas di udara hanya dengan pengaruh gravitasi. Kedua, seperti pada Gerak Jatuh Bebas, benda-benda yang melakukan gerak peluru dipengaruhi oleh gravitasi, yang berarah ke bawah (pusat bumi) dengan besar g = 9,8 m/s2. Ketiga, hambatan atau gesekan udara. Setelah benda tersebut ditendang, dilempar, ditembakkan atau dengan kata lain benda tersebut diberikan kecepatan awal hingga bergerak, maka selanjutnya gerakannya bergantung pada gravitasi dan gesekan alias hambatan udara. Karena kita menggunakan model ideal, maka dalam menganalisis gerak peluru, gesekan udara diabaikan.

Pengertian Gerak Peluru
Gerak peluru merupakan suatu jenis gerakan benda yang pada awalnya diberi kecepatan awal lalu menempuh lintasan yang arahnya sepenuhnya dipengaruhi oleh gravitasi.
Karena gerak peluru termasuk dalam pokok bahasan kinematika (ilmu fisika yang membahas tentang gerak benda tanpa mempersoalkan penyebabnya), maka pada pembahasan ini, Gaya sebagai penyebab gerakan benda diabaikan, demikian juga gaya gesekan udara yang menghambat gerak benda. Kita hanya meninjau gerakan benda tersebut setelah diberikan kecepatan awal dan bergerak dalam lintasan melengkung di mana hanya terdapat pengaruh gravitasi.
Mengapa dikatakan gerak peluru ? kata peluru yang dimaksudkan di sini hanya istilah, bukan peluru pistol, senapan atau senjata lainnya. Dinamakan gerak peluru karena mungkin jenis gerakan ini mirip gerakan peluru yang ditembakkan.

Jenis-jenis Gerak Parabola
Dalam kehidupan sehari-hari terdapat beberapa jenis gerak parabola.
Pertama, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah. Dalam kehidupan sehari-hari terdapat banyak gerakan benda yang berbentuk demikian. Beberapa di antaranya adalah gerakan bola yang ditendang oleh pemain sepak bola, gerakan bola basket yang dilemparkan ke ke dalam keranjang, gerakan bola tenis, gerakan bola volly, gerakan lompat jauh dan gerakan peluru atau rudal yang ditembakan dari permukaan bumi.
Kedua, gerakan benda berbentuk parabola ketika diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal, sebagaimana tampak pada gambar di bawah. Beberapa contoh gerakan jenis ini yang kita temui dalam kehidupan sehari-hari, meliputi gerakan bom yang dijatuhkan dari pesawat atau benda yang dilemparkan ke bawah dari ketinggian tertentu.

Ketiga, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dari ketinggian tertentu dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah.

Menganalisis Gerak Parabola
Bagaimana kita menganalisis gerak peluru ? Eyang Galileo telah menunjukan jalan yang baik dan benar. Beliau menjelaskan bahwa gerak tersebut dapat dipahami dengan menganalisa komponen-komponen horisontal dan vertikal secara terpisah. Gerak peluru adalah gerak dua dimensi, di mana melibatkan sumbu horisontal dan vertikal. Jadi gerak parabola merupakan superposisi atau gabungan dari gerak horisontal dan vertikal. Kita sebut bidang gerak peluru sebagai bidang koordinat xy, dengan sumbu x horisontal dan sumbu y vertikal. Percepatan gravitasi hanya bekerja pada arah vertikal, gravitasi tidak mempengaruhi gerak benda pada arah horisontal.
Percepatan pada komponen x adalah nol (ingat bahwa gerak peluru hanya dipengaruhi oleh gaya gravitasi. Pada arah horisontal atau komponen x, gravitasi tidak bekerja). Percepatan pada komponen y atau arah vertikal bernilai tetap (g = gravitasi) dan bernilai negatif /-g (percepatan gravitasi pada gerak vertikal bernilai negatif, karena arah gravitasi selalu ke bawah alias ke pusat bumi).
Gerak horisontal (sumbu x) kita analisis dengan Gerak Lurus Beraturan, sedangkan Gerak Vertikal (sumbu y) dianalisis dengan Gerak Jatuh Bebas.
Untuk memudahkan kita dalam menganalisis gerak peluru, mari kita tulis kembali persamaan Gerak Lurus Beraturan (GLB) dan Gerak Jatuh Bebas (GJB).
Gerak ini terdiri dari dua jenis, yaitu:

Sebelum menganalisis gerak parabola secara terpisah, terlebih dahulu kita amati komponen Gerak Peluru secara keseluruhan.
Pertama, gerakan benda setelah diberikan kecepatan awal dengan sudut teta terhadap garis horisontal.
Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan v0y merupakan kecepatan awal pada sumbu y. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x. Pada titik tertinggi lintasan gerak benda, kecepatan pada arah vertikal (vy) sama dengan nol.
Kedua, gerakan benda setelah diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal.
Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan Kecepatan awal pada sumbu vertikal (voy) = 0. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x.
Menganalisis Komponen Gerak Parabola secara terpisah
Sekarang, mari kita turunkan persamaan untuk Gerak Peluru. Kita nyatakan seluruh hubungan vektor untuk posisi, kecepatan dan percepatan dengan persamaan terpisah untuk komponen horisontal dan vertikalnya. Gerak peluru merupakan superposisi atau penggabungan dari dua gerak terpisah tersebut
Komponen kecepatan awal
Terlebih dahulu kita nyatakan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y.
Catatan : gerak peluru selalu mempunyai kecepatan awal. Jika tidak ada kecepatan awal maka gerak benda tersebut bukan termasuk gerak peluru. Walaupun demikian, tidak berarti setiap gerakan yang mempunyai kecepatan awal termasuk gerak peluru.
Karena terdapat sudut yang dibentuk, maka kita harus memasukan sudut dalam perhitungan kecepatan awal. Mari kita turunkan persamaan kecepatan awal untuk gerak horisontal (v0x) dan vertikal (v0y) dengan bantuan rumus Sinus, Cosinus dan Tangen. Dipahami dulu persamaan sinus, cosinus dan tangen di bawah ini.
Berdasarkan bantuan rumus sinus, cosinus dan tangen di atas, maka kecepatan awal pada bidang horisontal dan vertikal dapat kita rumuskan sebagai berikut :
Keterangan : v0 adalah kecepatan awal, v0x adalah kecepatan awal pada sumbu x, v0y adalah kecepatan awal pada sumbu y, teta adalah sudut yang dibentuk terhadap sumbu x positip.
Kecepatan dan perpindahan benda pada arah horisontal
Kita tinjau gerak pada arah horisontal atau sumbu x. Sebagaimana yang telah dikemukakan di atas, gerak pada sumbu x kita analisis dengan Gerak Lurus Beraturan (GLB). Karena percepatan gravitasi pada arah horisontal = 0, maka komponen percepatan ax = 0. Huruf x kita tulis di belakang a (dan besaran lainnya) untuk menunjukkan bahwa percepatan (atau kecepatan dan jarak) tersebut termasuk komponen gerak horisontal atau sumbu x. Pada gerak peluru terdapat kecepatan awal, sehingga kita gantikan v dengan v0.
Dengan demikian, kita akan mendapatkan persamaan Gerak Peluru untuk sumbu x :
Keterangan : vx adalah kecepatan gerak benda pada sumbu x, v0x adalah kecepatan awal pada sumbu x, x adalah posisi benda, t adalah waktu tempuh, x0 adalah posisi awal. Jika pada contoh suatu gerak peluru tidak diketahui posisi awal, maka silahkan melenyapkan x0.
Perpindahan horisontal dan vertikal
Kita tinjau gerak pada arah vertikal atau sumbu y. Untuk gerak pada sumbu y alias vertikal, kita gantikan x dengan y (atau h = tinggi), v dengan vy, v0 dengan voy dan a dengan -g (gravitasi). Dengan demikian, kita dapatkan persamaan Gerak Peluru untuk sumbu y :
Keterangan : vy adalah kecepatan gerak benda pada sumbu y alias vertikal, v0y adalah kecepatan awal pada sumbu y, g adalah gravitasi, t adalah waktu tempuh, y adalah posisi benda (bisa juga ditulis h), y0 adalah posisi awal.
Berdasarkan persamaan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y yang telah kita turunkan di atas, maka kita dapat menulis persamaan Gerak Peluru secara lengkap sebagai berikut :
Setelah menganalisis gerak peluru secara terpisah, baik pada komponen horisontal alias sumbu x dan komponen vertikal alias sumbu y, sekarang kita menggabungkan kedua komponen tersebut menjadi satu kesatuan. Hal ini membantu kita dalam menganalisis Gerak Peluru secara keseluruhan, baik ditinjau dari posisi, kecepatan dan waktu tempuh benda. Pada pokok bahasan Vektor dan Skalar telah dijelaskan teknik dasar metode analitis. Sebaiknya anda mempelajarinya terlebih dahulu apabila belum memahami dengan baik.
Persamaan untuk menghitung posisi dan kecepatan resultan dapat dirumuskan sebagai berikut.

Pertama, vx tidak pernah berubah sepanjang lintasan, karena setelah diberi kecepatan awal, gerakan benda sepenuhnya bergantung pada gravitasi. Nah, gravitasi hanya bekerja pada arah vertikal, tidak horisontal. Dengan demikian vx bernilai tetap.
Kedua, pada titik tertinggi lintasan, kecepatan gerak benda pada bidang vertikal alias vy = 0. pada titik tertinggi, benda tersebut hendak kembali ke permukaan tanah, sehingga yang bekerja hanya kecepatan horisontal alias vx, sedangkan vy bernilai nol. Walaupun kecepatan vertikal (vy) = 0, percepatan gravitasi tetap bekerja alias tidak nol, karena benda tersebut masih bergerak ke permukaan tanah akibat tarikan gravitasi. jika gravitasi nol maka benda tersebut akan tetap melayang di udara, tetapi kenyataannya tidak teradi seperti itu.
Ketiga, kecepatan pada saat sebelum menyentuh lantai biasanya tidak nol.

Pembuktian Matematis Gerak Peluru = Parabola
Sekarang Gurumuda ingin menunjukkan bahwa jalur yang ditempuh gerak peluru merupakan sebuah parabola, jika kita mengabaikan hambatan udara dan menganggap bahwa gravitasi alias g bernilai tetap. Untuk menunjukkan hal ini secara matematis, kita harus mendapatkan y sebagai fungsi x dengan menghilangkan/mengeliminasi t (waktu) di antara dua persamaan untuk gerak horisontal dan vertikal, dan kita tetapkan x0 = y0 = 0.
Kita subtitusikan nilai t pada persamaan 1 ke persamaan 2

Dari persamaan ini, tampak bahwa y merupakan fungsi dari x dan mempunyai bentuk umum
y = ax – bx2
Di mana a dan b adalah konstanta untuk gerak peluru tertentu. Persamaan ini merupakan fungsi parabola dalam matematika.
Petunjuk Penyelesaian Masalah-Soal Untuk Gerak Peluru
Pertama, baca dengan teliti dan gambar sebuah diagram untuk setiap soal yang diberikan. tapi jika otakmu mirip Eyang Einstein, gambarkan saja diagram tersebut dalam otak.
Kedua, buat daftar besaran yang diketahui dan tidak diketahui.
Ketiga, analisis gerak horisontal (sumbu x) dan vertikal (sumbu y) secara terpisah. Jika diketahui kecepatan awal, anda dapat menguraikannya menjadi komponen-konpenen x dan y.
Keempat, berpikirlah sejenak sebelum menggunakan persamaan-persamaan. Gunakan persamaan yang sesuai, bila perlu gabungkan beberapa persamaan jika dibutuhkan.

1. Gerak Setengah Parabola
Benda yang dilempar mendatar dari suatu ketinggian tertentu dianggap tersusun atas dua macam gerak, yaitu :
a. Gerak pada arah sumbu X (GLB)
     vx = v0
    Sx = X = vx t








Gbr. Gerak Setengah Parabola
b. Gerak pada arah sumbu Y (GJB/GLBB)
    vy = 0
    ]® Jatuh bebas
    y = 1/2 g t2

2. Gerak Parabola/Peluru
Benda yang dilempar ke atas dengan sudut tertentu, juga tersusun atas dua macam gerak dimana lintasan
dan kecepatan benda harus diuraikan pada arah X dan Y.
a. Arah sb-X (GLB)
    v0x = v0 cos q (tetap)
       X = v0x t = v0 cos q.t






Gbr. Gerak Parabola/Peluru

b. Arah sb-Y (GLBB)
   v0y = v0 sin q
     Y = voy t - 1/2 g t2
        = v0 sin q . t - 1/2 g t2
    vy = v0 sin q - g t

Syarat mencapai titik P (titik tertinggi): vy = 0
  top = v0 sin q / g
  sehingga
  top = tpq
  toq = 2 top
  OQ = v0x tQ = V02 sin 2q / g
  h max = v oy tp - 1/2 gtp2 = V02 sin2 q / 2g
  vt = Ö (vx)2 + (vy)2
Contoh:
1. Sebuah benda dijatuhkan dari pesawat terbang yang sedang melaju horisontal 720 km/jam dari ketinggian 490 meter. Hitunglah jarak jatuhnya benda pada arah horisontal ! (g = 
    9.8 m/det2).
Jawab:
   vx = 720 km/jam = 200 m/det.
    h = 1/2 gt2 ® 490 = 1/2 . 9.8 . t2
    t = 100 = 10 detik
   X = vx . t = 200.10 = 2000 meter

2. Peluru A dan peluru B ditembakkan dari senapan yang sama dengan sudut elevasi yang berbeda; peluru A dengan 30o dan peluru B dengan sudut 60o. Berapakah perbandingan
    tinggi maksimum yang dicapai peluru A dan peluru B?
Jawab:
   Peluru A:
   hA = V02 sin2 30o / 2g = V02 1/4 /2g = V02 / 8g
   Peluru B:
   hB = V02 sin2 60o / 2g = V02 3/4 /2g = 3 V02 / 8g
   hA = hB = V02/8g : 3 V02 / 8g = 1 : 3